As recognized, adventure as competently as experience more or less lesson, amusement, as skilfully as deal can be gotten by just checking out a ebook Economic Complexity Non Linear Dynamics Multi Agents Economies and after that it is not directly done, you could recognize even more roughly speaking this life, more or less the world.

We find the money for you this proper as competently as simple pretension to acquire those all. We pay for Economic Complexity Non Linear Dynamics Multi Agents Economies and and numerous ebook collections from fictions to scientific research in any way. in the midst of them is this Economic Complexity Non Linear Dynamics Multi Agents Economies and that can be your partner.

Economic Complexity-William A. Barnett 2004-02-09 The last fifteen or twenty years have been marked by fundamental advances in the sources of complex behavior in micro- and macro-economics, in the practical and methodological implications of such behavior, and in the methods and tools appropriate to cope with them. Much of these developments have been driven by the recognition and acceptance by economists of approaches initiated in other fields - such as non-linear dynamics, statistical physics, network theory, biology, computer science, and the use of computational methods as problem-solving tools - giving rise to important and innovative impulses to economic thinking. The sixteen papers in this book -- the fourteenth volume in the series International Symposia in Economic Theory and Econometrics - reflect from various perspectives this recent evolution. They are the outgrow from a selection of communications presented at the COMPLEXITY2000 workshop held in Aix en Provence, France, 4-6 May 2000 - a workshop that brought together, from twenty-two nations, almost seventy economists, mathematicians, biologists and physicists interested in complex phenomena. All papers were strictly refereed in the intended tradition of the series: to provide journal quality collections of research papers of unusual importance in areas of currently highly visible activity within the economics profession. With its selection of articles, the book presents an overview of advanced contributions to complexity in economics and social system, such as chaotic dynamics and multiple equilibria, agent-based models, applications of genetic algorithms, non-equilibrium macro-dynamics, information transmission, learning mechanisms. Although the papers address economic problems, the authorship and the perspectives presented are interdisciplinary and provide therefore a number of innovative insights and solutions to classical or new questions.

Complex and Chaotic Nonlinear Dynamics-Thierry Vialar 2009-04-26 Complex dynamics constitute a growing and increasingly important area as they offer a strong potential to explain and formalize natural, physical, financial and economic phenomena. This book pursues the ambitious goal to bring together an extensive body of knowledge regarding complex dynamics from various academic disciplines. Beyond its focus on economics and finance, including for instance the evolution of macroeconomic growth models towards nonlinear structures as well as signal processing applications to stock markets, fundamental parts of the book are devoted to the use of nonlinear dynamics in mathematics, statistics, signal theory and processing. Numerous examples and applications, almost 700 illustrations
and numerical simulations based on the use of Matlab make the book an essential reference for researchers and students from many different disciplines who are interested in the nonlinear field. An appendix recapitulates the basic mathematical concepts required to use the book.

Nonlinear Dynamics, Complexity and Public Policy - Euel W. Elliott 1999
Introduces those with an interest in the policy sciences to the field of nonlinear dynamics and complex systems, and their applications to problems of public policy. Four of the nine contributions concentrate on the implications of nonlinear dynamics and complexity for understanding the evolution of economic systems or instruments of economic policymaking. Three papers explore a set of non-economic related policy areas involving dynamics at a reduced level of aggregations from macroeconomic phenomena. The final contributions consider information technology and the challenge of time.

Chaos and Complexity Theory for Management: Nonlinear Dynamics - Banerjee, Santo 2012-11-30
Although chaos theory refers to the existence between seemingly random events, it has been gaining the attention of science, technology and managements fields. The shift from traditional procedures to the dynamics of chaos and complexity theory has resulted in a new element of complexity thinking, allowing for a greater capability for analyzing and understanding key business processes. Chaos and Complexity Theory for Management: Nonlinear Dynamics explores chaos and complexity theory and its relationship with the understanding of natural chaos in the business environment. Utilizing these theories aids in comprehending the development of businesses as a complex adaptive system.

Nonlinear Dynamics of Financial Crises - Ionut Purica 2015-03-28
When just a handful of economists predicted the 2008 financial crisis, people should wonder how so many well educated people with enormous datasets and computing power can be so wrong. In this short book Ionut Purica joins a growing number of economists who explore the failings of mainstream economics and propose solutions developed in other disciplines, such as sociology and evolutionary biology. While it might be premature to call for a revolution, Dr. Purica echoes John Maynard Keynes in believing that economic ideas are "dangerous for good or evil." In recent years evil seems to have had the upper hand. "Nonlinear Dynamics of Financial Crises" points to their ability to do good. Makes complex economics ideas accessible by carefully explaining technical terms and minimizing mathematics and equations. Delivers easily-understood perspectives about the global economy by constructing broad assumptions and conclusions in the face of its infinitely complexity. Challenges received economic ideas by focusing on human behavior and the roles it plays in easily-observable recent trends and events.

Nonlinear Dynamics in Economics and Social Sciences - Franco Gori 2012-12-06
This volume constitutes the Proceedings of the "Nonlinear Dynamics in Economics and Social Sciences" Meeting held at the Certosa di Pontignano, Siena, on May 27-30, 1991. The Meeting was organized by the National Group "Modelli Nonlineari in Economia e Dinamiche Complesse" of the Italian Ministry of University and SCientific Research, M.U.R.S.T. The aim of the Conference, which followed a previous analogous initiative taking place in the very same Certosa, on January 1988, was the one of offering a come together opportunity to economists interested in a new mathematical approach to the modelling of economical processes, through the use of more advanced analytical techniques, and mathematicians acting in the field of global dynamical systems theory and applications. A basic underlying idea drove the organizers: the necessity of focusing on the use that recent methods and results, as those commonly referred to the overpopularized label of "Chaotic Dynamics", did find in the social sciences domain; and thus to check their actual relevance in the research program of modelling economical phenomena, in order to individuate and stress promising perspectives, as well as to curb excessive hopes and criticize not infrequent cases where research reduces to mechanical, ad hoc, applications of "a la mode" techniques. In a word we felt the need of looking about the state of the arts in non-linear systems theory applications to economics and social processes: hence the title of the workshop and the volume.

Nonlinear Dynamics and Complexity - Valentin Afraimovich 2013-11-22
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

Nonlinear Dynamical Systems in Economics—Marji Lines 2007-03-23
Many problems in theoretical economics are mathematically formalized as dynamical systems of difference and differential equations. In recent years a truly open approach to studying the dynamical behavior of these models has begun to make its way into the mainstream. That is, economists formulate their hypotheses and study the dynamics of the resulting models rather than formulating the dynamics and studying hypotheses that could lead to models with such dynamics. This is a great progress over using linear models, or using nonlinear models with a linear approach, or even squeezing economic models into well-studied nonlinear systems from other fields. There are today a number of economic journals open to publishing this type of work and some of these have become important. There are several societies which have annual meetings on the subject and participation at these has been growing at a good rate. And of course there are methods and techniques available to a more general audience, as well as a greater availability of software for numerical and graphical analysis that makes this type of research even more exciting. The lecturers for the Advanced School on Nonlinear Dynamical Systems in Economics, who represent a wide selection of the research areas to which the theory has been applied, agree on the importance of simulations and computer-based analysis. The School emphasized computer applications of models and methods, and all contributors ran computer lab sessions.

Nonlinear Dynamics in Economics, Finance and the Social Sciences—Gian Italo Bischi 2009-12-15
Over the last two decades there has been a great deal of research into nonlinear dynamic models in economics, finance and the social sciences. This book contains twenty papers that range over very recent applications in these areas. Topics covered include structural change and economic growth, disequilibrium dynamics and economic policy as well as models with boundedly rational agents. The book illustrates some of the most recent research tools in this area and will be of interest to economists working in economic dynamics and to mathematicians interested in seeing ideas from nonlinear dynamics and complexity theory applied to the economic sciences.

Nonlinear Dynamics in Equilibrium Models—John Stachurski 2012-01-25
Optimal growth theory studies the problem of efficient resource allocation over time, a fundamental concern of economic research. Since the 1970s, the techniques of nonlinear dynamical systems have become a vital tool in optimal growth theory, illuminating dynamics and demonstrating the possibility of endogenous economic fluctuations. Kazuo Nishimura’s seminal contributions on business cycles, chaotic equilibria and indeterminacy have been central to this development, transforming our understanding of economic growth, cycles, and the relationship between them. The subjects of Kazuo’s analysis remain of fundamental importance to modern economic theory. This book collects his major contributions in a single volume. Kazuo Nishimura has been recognized for his contributions to economic theory on many occasions, being elected fellow of the Econometric Society and serving as an editor of several major journals. Chapter “Introduction” is available open access under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License via link.springer.com.

Nonlinear Dynamical Economics and Chaotic Motion—Hans-Walter Lorenz 2012-12-06
Usually, the first edition of a book still contains a multiplicity of typographic, conceptual, and computational errors even if one believes the opposite at the time of publication. As this book did not represent a counterexample to this rule, the current second edition offers a chance to remove at least the known shortcomings. The book has been partly re-organized. The previously rather long Chapter 4 has been split into two separate chapters dealing with discrete-time and continuous time approaches to nonlinear economic dynamics. The short summary of basic
properties of linear dynamical systems has been banned to an appendix because the line of thought in the chapter seems to have been unnecessarily interrupted by these technical details and because the book concentrates on nonlinear systems. This appendix, which mainly deals with special formal properties of dynamical systems, also contains some new material on invariant subspaces and center-manifold reductions. A brief introduction into the theory of lags and operators is followed by a few remarks on the relation between the ‘true’ properties of dynamical systems and their behavior observable in numerical experiments. Additional changes in the main part of the book include a re-consideration of Popper’s determinism vs. indeterminism discussion in the light of chaotic properties of deterministic, nonlinear systems in Chapter 1. An investigation of a simultaneous price-quantity adjustment process, a more detailed inquiry into the uniqueness property of limit cycles, and a short presentation of relaxation oscillations are included in Chapter 2.

Nonlinear and Complex Dynamics-José António Tenreiro Machado 2011-08-28 Nonlinear Dynamics of Complex Systems describes chaos, fractal and stochasticsities within celestial mechanics, financial systems and biochemical systems. Part I discusses methods and applications in celestial systems and new results in such areas as low energy impact dynamics, low-thrust planar trajectories to the moon and earth-to-halo transfers in the sun, earth and moon. Part II presents the dynamics of complex systems including bio-systems, neural systems, chemical systems and hydro-dynamical systems. Finally, Part III covers economic and financial systems including market uncertainty, inflation, economic activity and foreign competition and the role of nonlinear dynamics in each.

Sunspots and Non-Linear Dynamics-Kazuo Nishimura 2016-12-03 This book presents the state-of-the-art in non-linear dynamics and sunspots. These two topics have been the core of an international conference on instability and public policies in a globalized world, organized at Aix-Marseille School of Economics and GREQAM in honor of Jean-Michel Grandmont. He has made significant contributions on general equilibrium theory, monetary theory, learning, aggregation, non-linear dynamics and sunspots. This book assembles contributions by Jean-Michel Grandmont's colleagues, students and friends that have been influenced by his works and that are at the frontier of research in this domain today.

Simplicity of Complexity in Economic and Social Systems-Dariusz Grech 2020-11-08 This book presents the Proceedings of the 54th Winter School of Theoretical Physics on Simplicity of Complexity in Economic and Social Systems, held in Łądek Zdrój, Poland, from 18 to 24 February 2018. The purpose of the book is to introduce the new interdisciplinary research that links statistical physics, and particular attention is given to link physics of complex systems, with financial analysis and sociology. The main tools used in these areas are numerical simulation of agents behavior and the interpretation of results with the help of complexity methods, therefore a background in statistical physics and in physics of phase transition is necessary to take the first steps towards these research fields called econophysics and sociophysics. In this perspective, the book is intended to graduated students and young researchers who want to begin the study of this established new area, which connects physicists, economists, sociologists and IT professionals, to better understand complexity phenomena existing not only in physics but also in complex systems being seemingly far from traditional view at physics.

Nonlinear Methods in Economic Dynamics and Optimal Control- 1992

Nonlinear Dynamics in Economics-Bärbel Finkenstädt 2012-12-06 1.1 Introduction In economics, one often observes time series that exhibit different patterns of qualitative behavior, both regular and irregular, symmetric and asymmetric. There exist two different perspectives to explain this kind of behavior within the framework of a dynamical model. The traditional belief is that the time evolution of the series can be explained by a linear dynamic model that is exogenously disturbed by a stochastic process. In that case, the observed irregular behavior is explained by the influence of external random shocks which do not necessarily have an economic reason. A more recent theory has evolved in economics that attributes the patterns of change in economic time series to an underlying
nonlinear structure, which means that fluctuations can as well be caused endogenously by the influence of market forces, preference relations, or technological progress. One of the main reasons why nonlinear dynamic models are so interesting to economists is that they are able to produce a great variety of possible dynamic outcomes - from regular predictable behavior to the most complex irregular behavior - rich enough to meet the economists’ objectives of modeling. The traditional linear models can only capture a limited number of possible dynamic phenomena, which are basically convergence to an equilibrium point, steady oscillations, and unbounded divergence. In any case, for a linear system one can write down exactly the solutions to a set of differential or difference equations and classify them.

Nonlinear Dynamics in Complex Systems - Armin Fuchs 2012-09-22 With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. “This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future.” “With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems.” “What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically.” (J.A.Scott Kelso, excerpts from the foreword)

Dynamics Of Complex Systems - Yaneer Bar-yam 2019-03-04 This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.

Complex Networks and Dynamics - Pasquale Commendatore 2016-09-14 This volume sheds light on the current state of complex networks and nonlinear dynamics applied to the understanding of economic and social phenomena ranging from geographical economics to macroeconomics and finance, and its purpose is to give readers an overview of several interesting topics for research at an intermediate level. Three different and interdisciplinary, but complementary, aspects of networks are put together in a single piece, namely: (i) complex networks theory, (ii) applied network analysis to social and economic interrelations, and (iii) dynamical evolution of systems and networks. The volume includes contributions from excellent scholars in economics and social sciences as well as leading experts in the fields of complex networks and nonlinear dynamics.

Nonlinear Dynamical Systems in Economics - Marji Lines 2005-08-03 Many problems in theoretical economics are mathematically formalized as dynamical systems of difference and differential equations. In recent years a truly open approach to studying the dynamical behavior of these models has begun to make its way into the mainstream. That is, economists formulate their hypotheses and study the dynamics of the resulting models...
rather than formulating the dynamics and studying hypotheses that could lead to models with such dynamics. This is a great progress over using linear models, or using nonlinear models with a linear approach, or even squeezing economic models into well-studied nonlinear systems from other fields. There are today a number of economic journals open to publishing this type of work and some of these have become important. There are several societies which have annual meetings on the subject and participation at these has been growing at a good rate. And of course there are methods and techniques available to a more general audience, as well as a greater availability of software for numerical and graphical analysis that makes this type of research even more exciting. The lecturers for the Advanced School on Nonlinear Dynamical Systems in Economics, who represent a wide selection of the research areas to which the theory has been applied, agree on the importance of simulations and computer-based analysis. The School emphasized computer applications of models and methods, and all contributors ran computer lab sessions.

Nonlinear Models for Economic Decision Processes - Ionut Purica 2010

Using models, developed in one branch of science, to describe similar behaviors encountered in a different one, is the essence of a synergetic approach. A wide range of topics has been developed including Agent-based models, econophysics, socio-economic networks, information, bounded rationality and learning in economics, markets as complex adaptive systems, evolutionary economics, multiscale analysis and modeling, nonlinear dynamics and econometrics, physics of risk, statistical and probabilistic methods in economics and finance. Complexity. This publication concentrates on process behavior of economic systems and building models that stem from Haken's, Prigogine's, Taylor's work as well as from nuclear physics models.

Economics: Complex Windows - Massimo Salzano 2006-01-17

"In some ways, the effect of achieving understanding is to reverse completely our initial attitude of mind. For everyone starts (as we have said) by being perplexed by some fact or other: for instance... the fact that the diagonal of a square is incommensurable with the side. Anyone who has not yet seen why the side and the diagonal have no common unit regards this as quite extraordinary. But one ends up in the opposite frame of mind... for nothing would so much abbergast a mathematician as if the diagonal and side of a square were to become commensurable". [Aristotele] This is the 1st volume of a new series entitled “New Economic Windows”. Each volume in the series will, we hope, provide pointers towards a better understanding of the nature of economic phenomena and help to “reverse our initial state of mind” as economists. As H. Simon observed, Economics must be considered a “hard”, (in the sense of difficult rather than precise), science. As he cogently argued, the problems dealt with are so complex they “cannot simply be reduced to analytically solvable models or decomposed into separate sub processes”. In this he was following on from Einstein who, many years earlier, when asked why he had not turned his attention to economics said that he found it too difficult a subject to handle scientifically.

Brock, Hsieh, and LeBaron show how the principles of chaos theory can be applied to such areas of economics and finance as the changing structure of stock returns and nonlinearity in foreign exchange.

Non-Linear Dynamics and Endogenous Cycles - Gilbert Abraham-Frois 2012-12-06

Considerable work has been done on chaotic dynamics in the field of economic growth and dynamic macroeconomic models during the last two decades. This book considers numerous new developments: introduction of infrastructure in growth models, heterogeneity of agents, hysteresis systems, overlapping models with "pay-as-you-go" systems, Keynesian approaches with finance considerations, interactions between relaxation cycles and chaotic dynamics, methodological issues, long memory processes and fractals... A volume of contributions which shows the relevance and fruitfulness of non-linear analysis for the explanation of complex dynamics in economic systems.

An Introduction to Complex Systems - Paul Fieguth 2016-11-26

This undergraduate text explores a variety of large-scale phenomena - global economic-complexity-non-linear-dynamics-multi-agents-economies-and...
warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for undergraduate students in a technical domain such as engineering, computer science, physics, mathematics, and environmental studies.

Nonlinear Dynamics, Mathematical Biology, And Social Science

Joshua M. Epstein 2018-03-08 These lectures develop simple models of complex social processes using nonlinear dynamics and mathematical biology. Dynamical analogies between seemingly disparate social and biological phenomena, revolutions and epidemics, arms races, and ecosystem dynamics, are revealed and exploited. Nonlinear Dynamics, Mathematical Biology, and Social Science invites social scientists to relax, in some cases abandon, the predominant assumption of perfectly informed utility maximization and explore social dynamics from such perspectives as epidemiology and predator-prey theory. The volume includes a concentrated course on nonlinear dynamical systems.

Barriers and Bounds to Rationality

Peter S. Albin 1998 Peter Albin is known for his seminal work in applying the concepts of adaptive dynamical systems, first developed by biologists and physicists, to the study of economic systems. This book is a collection of his pathbreaking articles on the application of cellular automata and complexity theory to economic problems. Duncan Foley provides a thoughtful introduction in which he reviews the disparate analytical sources of Albin’s work in the theories of nonlinear dynamical systems, economic dynamics, cellular automata, linguistic and computational complexity, and bounded rationality. Albin has analyzed economic systems as interactions of highly complex components (i.e., intelligent human beings). He uses the theories of generative linguistics and cellular automata to establish that the complexity level of economic systems is, in principle at least, that of a Turing machine or general-purpose computer, establishing that classic economic approaches to the problems of household and firm choice, macroeconomic prediction, and policy evaluation may give rise to undecidable propositions and uncomputable functions. He develops simple models of dynamic economic interaction based on cellular automata which illustrate the inherent complexity of economic interactions and the resulting challenge they pose to traditional theories of rational economic behavior. These models explore the dynamics of the business cycle, decentralized market trading, and the emergence of cooperation in a novel local-interaction version of the repeated prisoners’ dilemma game. Albin’s work provides a unique and important perspective on economic systems.

Philosophy of Complex Systems

2011-05-23 The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of complex nonlinear dynamical systems, especially in recent years. -Comprehensive coverage of
all main theories in the philosophy of Complex Systems -Clearly written expositions of fundamental ideas and concepts -Definitive discussions by leading researchers in the field -Summaries of leading-edge research in related fields are also included

Handbook of Mathematical Economics - W. Hildenbrand 1991-09-10

The Handbook of Mathematical Economics aims to provide a definitive source, reference, and teaching supplement for the field of mathematical economics. It surveys, as of the late 1970's the state of the art of mathematical economics. This is a constantly developing field and all authors were invited to review and to appraise the current status and recent developments in their presentations. In addition to its use as a reference, it is intended that this Handbook will assist researchers and students working in one branch of mathematical economics to become acquainted with other branches of this field. The emphasis of this fourth volume of the Handbook of Mathematical Economics is on choice under uncertainty, general equilibrium analysis under conditions of uncertainty, economies with an infinite number of consumers or commodities, and dynamical systems. The book thus reflects some of the ideas that have been most influential in mathematical economics since the appearance of the first three volumes of the Handbook. Researchers, students, economists and mathematicians will all find this Handbook to be an indispensable reference source. It surveys the entire field of mathematical economics, critically reviewing recent developments. The chapters (which can be read independently) are written at an advanced level suitable for professional, teaching and graduate-level use. For more information on the Handbooks in Economics series, please see our home page on http://www.elsevier.nl/locate/hes

Nonlinear Wave Dynamics - J. Engelbrecht 2013-04-17

At the end of the twentieth century, nonlinear dynamics turned out to be one of the most challenging and stimulating ideas. Notions like bifurcations, attractors, chaos, fractals, etc. have proved to be useful in explaining the world around us, be it natural or artificial. However, much of our everyday understanding is still based on linearity, i.e. on the additivity and the proportionality. The larger the excitation, the larger the response—this seems to be carved in a stone tablet. The real world is not always reacting this way and the additivity is simply lost. The most convenient way to describe such a phenomenon is to use a mathematical term—nonlinearity. The importance of this notion, i.e. the importance of being nonlinear is nowadays more and more accepted not only by the scientific community but also globally. The recent success of nonlinear dynamics is heavily biased towards temporal characterization widely using nonlinear ordinary differential equations. Nonlinear spatio-temporal processes, i.e. nonlinear waves are seemingly much more complicated because they are described by nonlinear partial differential equations. The richness of the world may lead in this case to coherent structures like solitons, kinks, breathers, etc. which have been studied in detail. Their chaotic counterparts, however, are not so explicitly analysed yet. The wavebearing physical systems cover a wide range of phenomena involving physics, solid mechanics, hydrodynamics, biological structures, chemistry, etc.

Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-excited Attractors - Christos Volos 2019-05-03

In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: self-excited attractors and hidden attractors. The localization of self-excited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with non-hyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phase-locked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with self-excited attractors and hidden attractors.
Symmetry and Complexity - Klaus Mainzer 2005 Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.

Nonlinear Dynamics and Evolutionary Economics - Richard Hollis Day 1993 Advances in physics, computers, and mathematics have made it possible to illustrate an astonishing array of potential behavior that can occur when nonlinear interactions are present. As Prigogine explains from a physicist's perspective, the fundamental role of instability and bounded rationality provide more precise understanding for evolution and changes. This volume considers these developments from various fields in the context of economic science. The work starts with a general non-mathematical discussion, introducing the major themes--nonlinearity, dynamical systems, and evolution in economic processes. The work continues with nonlinear analysis of macroeconomic growth and fluctuations. It describes analyses of economic adaptation, learning, and self-organization. The volume also scrutinizes a specific market--equities using nonlinear analysis, controlled experiments, and statistical inference when nonlinearity plays an essential role in data generation. The volume closes with an historical reflection by Richard Goodwin and a roundtable discussion on basic issues and new challenges in nonlinear economic dynamics.

Chaos, Nonlinearity, Complexity - Ashok Sengupta 2006-08-29 This book explores non-extensive statistical mechanics in non-equilibrium thermodynamics, and presents an overview of the strong nonlinearity of chaos and complexity in natural systems, drawing on relevant mathematics from topology, measure-theory, inverse and ill-posed problems, set-valued analysis, and nonlinear functional analysis. It offers a self-contained theory of complexity and complex systems as the steady state of non-equilibrium systems, denoting a homeostatic dynamic equilibrium between stabilizing order and destabilizing disorder.

Growth Theory, Nonlinear Dynamics, and Economic Modelling - William A. Brock 2001-01-01 'Buz Brock's contribution to economic theory in general and economic dynamics in particular are characterized by an unmatched richness of ideas and by deep theoretical, empirical as well as
Brock's contribution to economic dynamics range from one extreme of the field, global stability of stochastic optimal growth models, to another extreme, market instability and nonlinearity in economic and financial modelling and data analysis. But his work also includes environmental and economic policy issues and, more recently, the modelling of markets as complex adaptive systems. This collection of essays reflects Brock's richness of ideas that have motivated economists for more than three decades already and will continue to influence many economists for the next decades to come.' - Cars H. Hommes, University of Amsterdam, The Netherlands 'Buz Brock has been, from the beginning of his career, one of the most original thinkers in dynamic economics. His early work showed that growth with random elements could be studied effectively and above all posed exactly the right questions. His more recent work has brought complexity theory to the fore and shown its implications for financial and other markets. In the process, he has both introduced and used econometric tools to show the relevance of his work to empirically observed phenomena. It is very useful to have his work in collected form.' - Kenneth J. Arrow, Stanford University, US This outstanding collection of William Brock's essays illustrates the power of dynamic modelling to shed light on the forces for stability and instability in economic systems. The articles selected reflect his best work and are indicative both of the type of policy problem that he finds challenging and the complex methodology that he uses to solve them. Also included is an introduction by Brock to his own work, which helps tie together the main aspects of his research to date.

Chimera States in Complex Networks - Eckehard Schöll 2020-01-03

Nonlinear Economic Dynamics and Financial Modelling - Roberto Dieci 2014-07-26 This book reflects the state of the art on nonlinear economic dynamics, financial market modelling and quantitative finance. It contains eighteen papers with topics ranging from disequilibrium macroeconomics, monetary dynamics, monopoly, financial market and limit order market models with boundedly rational heterogeneous agents to estimation, time series modelling and empirical analysis and from risk management of interest-rate products, futures price volatility and American option pricing with stochastic volatility to evaluation of risk and derivatives of electricity market. The book illustrates some of the most recent research tools in these areas and will be of interest to economists working in economic dynamics and financial market modelling, to mathematicians who are interested in applying complexity theory to economics and finance and to market practitioners and researchers in quantitative finance interested in limit order, futures and electricity market modelling, derivative pricing and risk management.